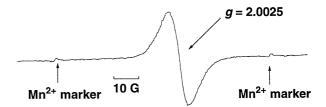
Chemistry Letters 1997 875

Formation of C₆₀ Radical Cation in Iron(III)-Exchanged Zeolite Y

Shunichi Fukuzumi,* Tomoyoshi Suenobu, Tsutomu Urano, and Keiko Tanaka Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565

(Received May 15, 1997; CL-970369)

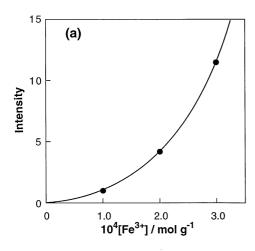

When C_{60} is introduced into the Fe³⁺-exchanged zeolite Y sample, an intense ESR signal at g=2.0027 is observed. The ESR signal is due to the formation of C_{60} radical cation (C_{60} ⁺+), since the signal intensity increases with an increase in the amount of Fe³⁺ loaded in the zeolite. Addition of perylene into the C_{60} ⁺-zeolite system results in electron transfer from perylene to C_{60} ⁺+ to produce perylene radical cation accompanied by the disappearance of C_{60} ⁺-.

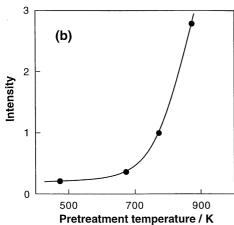
Since the electron transfer reduction of C_{60} yields the corresponding stable radical anion $(C_{60}^{\bullet -})$, 1 the ESR spectra of $C_{60}^{\bullet -}$ have been extensively studied. 2 In contrast, relatively little is known about C_{60} radical cation because of the difficulty in the electron transfer oxidation of C_{60} by normal oxidants as well as the instability of the radical cation in solution, 1 although the formation of C_{60} radical cation has been detected by pulse radiolysis study. 3 There have also been some reports on the ESR spectra assignable to $C_{60}^{\bullet +}$. However, the definitive ESR detection of $C_{60}^{\bullet +}$ remains to be confirmed. In the case of $C_{76}^{\bullet +}$ which has the lower oxidation potential than C_{60} , 8 isolation of a stable salt of $C_{76}^{\bullet +}$ has recently been reported.

This study reports the formation of C_{60} radical cation stabilized in Fe³⁺-exchanged zeolite Y. Pretreatment of the Fe³⁺-exchanged zeolite and introduction of C_{60} under high vacuum at high temperatures enables us to detect the ESR spectrum of $C_{60}^{\bullet+}$ which is stable at room temperature. The effects of the amount of Fe³⁺ loaded in the zeolite and the pretreatment temperature on the ESR intensity of $C_{60}^{\bullet+}$ are reported together with electron transfer from perylene or tetramethyltin to $C_{60}^{\bullet+}$ in the zeolite.

Zeolite NaY was activated by heating in a furnace in the air at 773 K for 6 h. The Fe³+-zeolite sample (1.0 g) was prepared by suspending NaY (1.0 g) in an MeCN solution (20 mL) containing Fe(ClO₄)₃•6H₂O (46.2 - 139 mg, 1.0 x 10^{-4} - 3.0 x 10^{-4} mol) for 30 min as reported previously. It was confirmed that all Fe³+ ions in solution were exchanged with NaY. The Fe³+-zeolite was then filtered and evacuated at room temperature. An ESR tube containing the Fe³+-zeolite sample (180 mg) and C₆₀ (4.2 x 10^{-6} mol, 3.0 mg) was evacuated at 298 K for 12 h and sealed off. Then, the ESR tube was placed in a furnace at high temperatures (e.g., 693 K) for 3 h. After the treatment, the sample color turned brown.

Figure 1 shows the ESR spectrum of the treated sample which has an isotropic g value of 2.0027 ± 0.0002 . No ESR signal at g = 2.0027 was observed without C_{60} . The g value is quite different from that of C_{60} . (g = 2.000). The small g value of C_{60} as compared to that of free electron (g = 2.0023) is expected from the singly occupied triply degenerate LUMO of C_{60} , although C_{60} would be required to distort as a consequence of the Jahn-Teller distortion. In contrast, a Jahn-Teller distorted molecule of C_{60} is expected to have a g factor being larger than that of a free spin. The g value of the ESR spectrum in Figure 1 is also different from that of the triplet C_{60} (g = 2.0014). Thus, the ESR spectrum in Figure 1 may be assigned as C_{60} which is oxidized by Fe³⁺ loaded into the


Figure 1. ESR spectrum of C_{60} + observed in Fe³⁺-zeolite Y (180 mg, Fe³⁺: 1.0 x 10⁻⁴ mol g⁻¹) pretreated at 873 K for 3 h and measured at 298 K.


zeolite.¹³ Hwang et al. have recently reported that irradiation of a toluene solution of C_{60} affords two ESR bands with g values of 2.0013 and 2.0024, which are assigned to be the triplet C_{60} and $C_{60}^{\bullet+}$, respectively.⁴ The g value of the latter and that of $C_{76}^{\bullet+}$ (2.0030)⁹ agree with that in Figure 1 within experimental errors. On the other hand, the formation of $C_{60}^{\bullet-}$ (g=1.9995) was reported for C_{60} adsorbed by activated 13 X molecular sieve which contains no oxidants.¹¹

The signal intensity (doubly integrated area) of C₆₀ radical cation produced in the Fe3+-exchanged zeolite with different amounts of exchanged Fe3+ increases drastically with an increase in the amount of exchanged Fe³⁺, [Fe³⁺] as shown in Figure 2a. Such a dependence of the ESR signal intensity depending on [Fe³⁺] indicates that C₆₀ is oxidized by electron transfer to Fe³⁺ to produce $C_{60}^{\bullet+}$. The g value and the linewidth are constant irrespective of [Fe³⁺]. The ESR signal intensity also increases with an increase in the pretreatment temperature of the Fe³⁺zeolite sample containing C₆₀ above the sublimation temperature (673 K)¹⁴ as shown in Figure 2b. The size of C₆₀ having a diameter of 7.1 Å may be small enough for C₆₀ molecules to penetrate the zeolite supercage with the window diameter of 7.4 Å, 15 but the 7.4 Å openings are still too small for facile diffusion of C_{60} in the zeolite. The evaporation of C_{60} at higher temperatures may help C₆₀ to squeeze into the oxidation site of Fe³⁺ inside the zeolite. Once C₆₀*+ is formed, it may be stabilized in the zeolite supercage.

When a degassed benzene solution of perylene was introduced into the Fe³+-zeolite sample containing $C_{60}^{\bullet+}$ under vacuum at 298 K, the ESR signal of $C_{60}^{\bullet+}$ disappeared and instead that of perylene radical cation with the hyperfine structure was observed (g=2.0027, $a_1=3.0$ G, $a_2=0.6$ G, $a_3=3.8$ G). ¹⁶ Since the one-electron oxidation potential of perylene ($E^0_{ox} \ \nu s$. SCE = 1.04 V)¹⁷ is lower than the one-electron reduction potential of $C_{60}^{\bullet+}$ ($E^0_{red} \ \nu s$. SCE = 1.57 V)^{8,9}, electron transfer from perylene to $C_{60}^{\bullet+}$ should occur to produce perylene radical cation accompanied by disappearance of $C_{60}^{\bullet+}$. When tetramethyltin, the one-electron oxidation potential of which (Me₄Sn: $E^0_{ox} \ \nu s$. SCE = 1.56 V)¹⁸ is just below the one-electron reduction potential of $C_{60}^{\bullet+}$, is chosen as a reductant, electron transfer from Me₄Sn to $C_{60}^{\bullet+}$ in the zeolite occurred, resulting in a drastic decrease in the ESR signal intensity of $C_{60}^{\bullet+}$. Thus, the reactivity of $C_{60}^{\bullet+}$ produced in the zeolite is consistent with that

876 Chemistry Letters 1997

Figure 2. The doubly integrated ESR signal intensity of $C_{60}^{\bullet+}$ plotted against (a) the amount of Fe³⁺ loaded in the zeolite Y pretreated at 773 K for 3 h and (b) the pretreatment temperature with the fixed amount of Fe³⁺ loaded in the zeolite Y (1.0 x 10⁻⁴ mol g⁻¹). The doubly integrated intensity of the sample ([Fe³⁺] = 1.0 x 10⁻⁴ mol g⁻¹, the pretreatment temperature = 773 K) is taken as unity.

expected from the high one-electron oxidation potential.

This work was partially supported by a Grant-in Aid from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- 1 A. Hirsch, "The Chemistry of the Fullerenes," Thieme Verlag, New York (1994).
- P.-M. Allemand, G. Srdanov, A. Koch, K. Khemani, F. Wudl, Y. Rubin, F. Diederich, M. M. Alvarez, S. J. Anz, and R. L. Whetten, J. Am. Chem. Soc., 113, 2780 (1991); D. Dubois, M. T. Jones, and K. M. Kadish, J. Am. Chem.

- Soc., 114, 6446 (1992); J. Stinchcombe, A. Pénicaud, P. Bhyrappa, P. D. W. Boyd, and C. A. Reed, J. Am. Chem.
 Soc., 115, 5212 (1993); R. Subramanian, K. M. Kadish, M. N. Vijayashree, X. Gao, M. T. Jones, M. D. Miller, K. L. Krause, T. Suenobu, and S. Fukuzumi, J. Phys. Chem., 100, 16327 (1996).
- 3 D. M. Guldi, P. Neta, and K.-D. Asmus, *J. Phys. Chem.*, **98**, 4617 (1994).
- 4 C. C. Yang and K. C. Hwang, J. Am. Chem. Soc., 118, 4693 (1996).
- 5 S. G. Kukolich and D. R. Huffman, Chem. Phys. Lett., 182, 263 (1991); G. P. Miller, M. A. Buretea, M. M. Bernardo, C. S. Hsu, and H. L. Fang, J. Chem. Soc., Chem. Commun., 1994, 1549; H. Thomann, M. Bernardo, and G. P. Miller, J. Am. Chem. Soc., 114, 6593 (1992).
- 6 ESR signals of radical species derived from C₆₀ supported on solid catalysts have also been reported; M. Anpo, S. G. Zhang, S. Okamoto, H. Yamashita, and Z. Gu, Res. Chem. Intermed., 21, 631 (1995).
- 7 A. A. Slinkin, S. C. Emberson, and E. G. Derouane, *Kinet. Catal.*, **35**, 102 (1994).
- Q. Xie, F. Arias, and L. Echegoyen, J. Am. Chem. Soc.,
 115, 9818 (1993); Y. Yang, F. Arias, L. Echegoyen, L. P.
 F. Chibante, S. Flanagan, A. Robertson, and L. J. Wilson,
 J. Am. Chem. Soc., 117, 7801 (1995).
- R. D. Bolskar, R. S. Mathur, and C. A. Reed, *J. Am. Chem. Soc.*, **118**, 13093 (1996).
- 10 S. Fukuzumi, T. Urano, and T. Suenobu, *Chem. Commun.*, 1996, 213.
- 11 P. N. Keizer, J. R. Morton, K. F. Preston, and A. K. Sugden, *J. Phys. Chem.*, **95**, 7117 (1991).
- M. R. Wasielewski, M. P. O'Neil, K. R. Lykke, M. J. Pellin, and D. M. Gruen, J. Am. Chem. Soc., 113, 2774 (1991); G. L. Closs, P. Gautam, D. Zhang, P. J. Krusic, S. A. Hill, and E. Wasserman, J. Phys. Chem., 96, 5228 (1992); C. A. Steren, H. van Willigen, and K.-P. Dinse, J. Phys. Chem., 98, 7464 (1994).
- 13 Reed et al. have recently reported preliminary results on the oxidation of C₆₀ by a strong organic oxidant to prepare C₆₀*+ in solution. The g value (2.0023~2.0029) agrees with that in Figure 1. See: C. A. Reed, R. D. Bolskar, and R. Mathur, Meeting Abstracts, The Electrochemical Society, Inc., Pennington, 1997, p. 908.
- 14 W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, *Nature*, 347, 354 (1990).
- 15 D. W. Breck, "Zeolite Molecular Sieves," Wiley, New York (1974).
- 16 G. M. Muha, J. Phys. Chem., 71, 633 (1967).
- 17 J. Perichon, in "Encyclopedia of Electrochemistry of the Elements, Organic Section," ed by A. J. Bard and H. Lund, Marcel Dekker, New York (1978), Chap. XII-1, p. 127.
- 18 S. Fukuzumi, C. L. Wong, and J. K. Kochi, J. Am. Chem. Soc., 102, 2928 (1980).